多复变与复几何系列学术报告

  • 张丹
  • 创建时间: 2024-06-24

第一场

题目:关于方程$|Du|^\gamma \Delta_pu=f$ 的一个Calderon-Zygmund L^2估计

报告人:周渊 教授,北京师范大学

时间:6月28日14:00-14:50

地点:国科大玉泉路校区人文楼教一4

摘要:受到Miranda-Talenti公式和Cianchi-Mazya不等式的启发,建立了一个关于Hessian及规范化p调和算子的加权L^2预估计,由此获得了方程$|Du|^\gamma \Delta_pu=f$ 的一个Calderon-Zygmund L^2估计.

第二场

题目:Serrin's overdetermined problem in rough domains

报告人:张翼 副研究员,中国科学院数学与系统科学研究院

时间:6月28日15:00-15:50

地点:国科大玉泉路校区人文楼教一4

摘要:The classical Serrin's overdetermined theorem states that a $C^2$ bounded domain, which admits a function with constant Laplacian that satisfies both constant Dirichlet and Neumann boundary conditions, must necessarily be a ball. While extensions of this theorem to non-smooth domains have been explored since the 1990s, the applicability of Serrin's theorem to Lipschitz domains remained unresolved. In this talk we discuss about this problem, showing that the result holds for domains that are sets of finite perimeter with a uniform upper bound on the density, and it also allows for slit discontinuities

第三场

题目:Heat equation approach to Demailly regularity theorem

报告人:张振雷 教授,首都师范大学

时间:6月28日16:00-16:50

地点:国科大玉泉路校区人文楼教一4

摘要:Demailly regularity theorem for plurisubharmonic functions is a fundamental technique in complex geometry. In the talk I will present a heat equation approach to the theorem and discuss some applications to regularity of solutions to complex Monge-Ampere equations.