数学科学学院的陈凌近期研究了一般intertwining算子代数的性质;给出了一般intertwining算子代数的fusing和braiding同构,并证明了它们满足亏格零的Moore-Seiberg方程;还给出了Jacobi恒等式和intertwining算子代数的duality性质之间的关系。相关结果以独立作者的身份在Communications in Contemporary Mathematics上发表了62页的长文。
Ling Chen, On axiomatic approaches to intertwining operator algebras, Communications in Contemporary Mathematics, Vol. 18, No. 4 (2016), 1550051. (SCI) DOI:http://dx.doi.org/10.1142/S0219199715500510